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Abstract
It has been argued that for a finite two-dimensional classical Coulomb system
of characteristic size R, in its conducting phase, as R → ∞ the total free
energy (times the inverse temperature β) admits an expansion of the form:
βF = AR2 +BR + 1

6χ ln R, where χ is the Euler characteristic of the manifold
where the system exists. The first two terms represent the bulk free energy and
the surface free energy, respectively. The coefficients A and B are non-universal
but the coefficient of ln R is universal: it does not depend on the detail of the
microscopic constitution of the system (particle densities, temperature, etc).
By doing the usual Legendre transform this universal finite-size correction is
also present in the grand potential. The explicit form of the expansion has been
checked for some exactly solvable models for a special value of the coulombic
coupling. In this paper we present a method for obtaining these finite-size
corrections in the Debye–Hückel regime. It is based on the sine-Gordon field
theory to find an expression for the grand canonical partition function in terms
of the spectrum of the Laplace operator. As an example we find explicitly the
grand potential expansion for a Coulomb system confined in a disc and in an
annulus with ideal conductor walls.

PACS numbers: 05.20.Jj, 51.30.+i

1. Introduction

There are several reasons to study models over a finite-size region. For instance, with the recent
advance of computers, much information on statistical models has been derived from computer
simulations, which are necessarily limited to systems of finite size [1]. Also experimental
systems are finite (although very large). The finite scaling hypothesis allows the study of some
response functions for such finite-size models. For a d-dimensional system, this finite scaling
hypothesis states that if a given response function (for example, the susceptibility in a magnetic
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system) diverges in the bulk such as ξd−2x , where ξ is the correlation length and x is called
the scaling dimension of the corresponding studied quantity (the magnetization in the above
example), then in a finite system of characteristic size R, the response function should obey
the scaling law Rd−2x�(R/ξ), where � is some universal scaling function [2, 3]. At the
critical point where the correlation length diverges, the response function is then proportional
to Rd−2x . However, the scaling of the free energy at criticality is less well understood at least
for arbitrary dimension. In two dimensions, using methods from conformal field theory, it has
been shown that for a finite system with smooth boundary, of characteristic size R as R → ∞,
at criticality, the total free energy F has a large-R expansion of the form [3, 4]

βF = AR2 + BR − cχ

6
ln R + O(1). (1)

with β = (kBT )−1 the inverse reduced temperature. The first two terms represent, respectively,
the bulk free energy and the ‘surface’ (perimeter in two dimensions) contribution to the free
energy. In general, the coefficients A and B are non-universal but the dimensionless coefficient
of ln R is universal depending only on c, the conformal anomaly number, and on χ , the Euler
characteristic of the manifold (χ = 2 − 2h − b, where h is the number of handles and b
is the number of boundaries). Surprisingly enough, for classical Coulomb systems in their
conducting phase—not at criticality—this expansion for the free energy seems to hold with
c = 1 and a change of sign in the last term. This is surprising initially because in the
conducting phase (when the Coulomb system can screen any infinitesimal external charge)
the particle correlations are short range as opposed to the case when the system is at a critical
point (for instance at the liquid–gas second-order transition point) when the particle correlation
becomes long range. The argument put forward by Cardy [3] using conformal field theory
relies on the fact that the system under study is at a critical point. However, the finite-size
expansion of the free energy has been explicitly checked for Coulomb systems lying on some
simple geometries for some exactly solvable models for the fixed temperature defined by
βq2 = 2 where β−1 = kBT and ±q are the charges of the particles [5–8] and also it has been
verified numerically for the one-component plasma confined in a disc [9] for other values of
the coulombic coupling. The existence of the universal finite-size correction has also been
proved for the two-component plasma confined in a disc with hard walls in the whole regime
where the system of point particles is stable (βq2 < 2) [10]. For the one-component plasma
[11], for the symmetric two-component plasma [12] and for the asymmetric two-component
plasma [13] confined in a sphere the existence of the finite-size correction has been proved
for any temperature (provided that the system is stable) by the application of the stereographic
projection and some non-trivial sum rules concerning the density–density correlation function
in the plane geometry [14, 15].

Although the particle and charge correlations in Coulomb systems in their conducting
phase are short range because of the screening, the electric potential correlations are long
range [16, 17]. It has been argued [5, 6] that in this sense the system is comparable to a critical
system and therefore the expansion of the free energy (1) should hold.

In this paper we present a method for obtaining the grand potential finite-size expansion
for a confined Coulomb system in the Debye–Hückel regime and confirm the existence of
the logarithmic universal finite-size correction. The Debye–Hückel regime is defined by
the requirement that the average coulombic energy is much smaller than the thermal energy
[18, 19]. By the usual Legendre transform between the free energy and the grand potential it
can be inferred that the free energy will have the same logarithmic finite-size corrections as
the grand potential. Our method is based on the sine-Gordon field theory [20] to calculate the
grand canonical partition function.
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2. Sine-Gordon theory in the Debye–Hückel regime

There is a well-known analogy between statistical mechanics and quantum field theory:
often the partition function of a d-dimensional statistical model is formally analogous to
the generating functional of a quantum field in d spacetime dimensions in the Euclidean
formalism [21]. The simplest example of a quantum field theory which has relevance in
statistical mechanics is the free boson or Gaussian model. In this section we show that the
grand canonical partition function of a Coulomb system in the Debye–Hückel regime may
be represented as the generating functional of a massive free boson theory and therefore it
can be obtained exactly from a Gaussian integration as an infinite product of functions of the
eigenvalues of the Laplace operator calculated on the manifold where the system exists.

Let a classical (i.e. non-quantum) Coulomb system be composed of α = 1, . . . , r species
of particles each of which have Nα charges qα confined in a d-dimensional Riemannian
manifold of volume V . Suppose that the system is confined by grounded ideal conductor
walls, thus imposing vanishing Dirichlet boundary conditions on the electric potential. We
shall describe the system in the grand canonical ensemble with fugacities ζα = eβµα

/
�d

α for
the species α, where µα is the chemical potential and �α is the de Broglie thermal wavelength
which appears when the Gaussian integration over the kinetic part of the Hamiltonian is carried
out. For a finite but macroscopically large system, the interior of the system will be at an
almost constant electric potential ψ0. The value of ψ0 is controlled by the choice of the
fugacities. We will suppose in the following that the fugacities satisfy the relation∑

α

qαζα = 0 (2)

which is often referred to in the literature [26] as the pseudo-neutrality condition. In appendix
B we consider the general case when the fugacities do not satisfy the condition (2).

Let us introduce the Coulomb potential for a non-confined system for unit charges

v0
d(r, r′) =




1

|r − r′| if d = 3

−ln
|r − r′|

L
if d = 2.

(3)

In two dimensions, a solution of Poisson’s equation that vanishes at large distances does
not exist, therefore it is necessary to introduce an arbitrary length L that fixes the zero of
the electric potential. However, as we will see later, in the formulation of the Debye–Hückel
theory proposed here it will be necessary to suppose that L → ∞, thus receding the zero of the
electric potential to infinity. The necessity to choose L → ∞ also appears in the formulation
of the Debye–Hückel theory from the Ornstein–Zernicke equation and the approximation of
the direct correlation function by the Coulomb potential [22].

The Coulomb potential in d dimensions for the system confined with Dirichlet boundary
conditions will be referred to as vd . This potential satisfies the Poisson equation

	vd(r, r′) = −sdδ(r − r′) (4)

with s2 = 2π and s3 = 4π , and the Dirichlet boundary condition. If one considers vd(r, r′)
as the kernel of an integral operator which we will also call vd , we have vd = −sd	

−1. Let
�n(r) be the normalized eigenfunctions of the Laplacian with Dirichlet boundary conditions,
that is 	�n(r) = λn�n(r), where λn � 0 are the corresponding eigenvalues. These functions
are also eigenfunctions of vd with the corresponding eigenvalues −sd/λn � 0. Consider two
particles located at rα,i and rβ,j . A standard operator spectral decomposition gives for the
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interparticle potential

vd(rα,i , rβ,j ) = −
∑

n

sd

λn

�n(rα,i)�n(rβ,j ). (5)

The bar over � indicates complex conjugation. In addition to the interparticle energy we
consider the energy of each particle located at rα,i in the presence of the field produced
by itself v0

d(rα,i , rα,i) = vS−E(rα,i). This term is (twice) the self-energy of a unit charge.
Proceeding as in (5) it may be given by

vS−E(rα,i) = −
∑

k

sd

λ0
k

∣∣�0
k (rα,i)

∣∣2 (6)

where the λ0
k refer to eigenvalues calculated for the system without boundaries. Of course,

because of the form of the Coulomb potential the self-energy is in fact infinite. This divergence
may be avoided by the introduction of a short-distance potential [19] to cut off the singularity
of the Coulomb potential at the origin. To simplify the notation, we will not write down
this short-distance potential explicitly in what follows. It should be noted however that the
introduction of this short-distance potential is mandatory in classical statistical mechanics of
Coulomb systems in order to have a well-defined partition function in three dimensions (in
two dimensions at low coulombic couplings a system of point particles is stable). On the other
hand it turns out that the Debye–Hückel approximation is well defined for a system of point
particles: as we shall see later the short-distance potential does not appear in the final results.
Let us remark that for systems governed by quantum mechanics if all particles of the same sign
are fermions then the system is stable [23]. This is the case in nature where quantum mechanics
is responsible for the creation of stable-bound states. Therefore our classical analysis will
apply only to fully ionized systems.

The potential energy of the system is given by

H = 1

2

∑
α,β

∑′
i,j

qαqβvd(rα,i , rβ,j ) +
1

2

∑
α

∑
i

q2
α[vd(rα,i , rα,i) − vS−E(rα,i)]. (7)

The prime in the first summation means that the case when α = β and i = j must be omitted.
The first term is the usual interparticle energy between pairs. The second term is the Coulomb
energy of a particle and the polarization surface charge density that the particle has induced in
the boundaries of the system. When the method of images is applied to compute the Coulomb
potential vd , this energy can also be seen as the energy between each particle and its image.

Using the microscopic charge density defined as

ρ̂(r) =
r∑

α=1

Nα∑
i=1

qαδ(r − rα,i) (8)

we can write the potential part of the Hamiltonian of the system as

H = 1

2

∫
V

dr
∫

V

dr′ ρ̂(r)vd(r, r′)ρ̂(r′) − 1

2

r∑
α=1

Nα∑
i=1

q2
αvS−E(rα,i). (9)

Note that with this notation, in the first term, the terms q2
αvd(rα,i , rα,i)/2 have been included.

Often in the sine-Gordon transformation [20, 24] the second term is omitted in the Hamiltonian
in equation (9), which implies that the self-energy (infinite for point particles) is included in the
Hamiltonian when it should not be. This problem can be cured with a proper renormalization
of the fugacity [25]; however, this method is not convenient to use for the Debye–Hückel
approximation, therefore, we will proceed to subtract the self-energy from the start as shown
in equation (9).
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Now, using the well-known Gaussian integral

exp

(
1

2
B · A−1·B

)
=

∫
dX exp

(− 1
2 X · A · X + B · X

)
∫

dX exp
(− 1

2 X · A · X
) (10)

we can represent the Boltzmann factor as1

e−βH =
〈

exp

[
−β

∫
iρ̂(r)φ(r) dr +

β

2

r∑
α=1

Nα∑
i=1

q2
αvS−E(rαi

)

]〉
(11)

where we have defined the average of any operator ô as 〈ô〉 = 1
Z

∫
Dφô ×

exp
(

β

2sd

∫
φ(r)	φ(r) dr

)
, with Z = ∫

Dφ exp
(

β

2sd

∫
φ(r)	φ(r) dr

)
. On the other hand,

using (8) and (11) after some calculations the grand partition function is given by [20]

�(β, ζ1, . . . , ζr , V ) =
∞∑

N1=0

· · ·
∞∑

Nr=0

ζ
N1
1 · · · ζNr

r

N1! . . . Nr !

∫
· · ·

∫
e−βH

r∏
α=1

Nα∏
i=1

drα,i

=
〈

exp

[
r∑
α

ζα

∫
exp

(
β

(
−iqαφ(r) +

q2
α

2
vS−E(r)

))
dr

]〉
(12)

with V the volume of the manifold containing the system. We see from equation (12) that
the partition function for a gas of particles with two-body interactions may be obtained as the
average of the partition function of an ideal gas in an external fluctuating potential iφ(r). In
general the integration involving the calculation of (12) cannot be performed analytically—
with the notable exception of the two-dimensional two-component plasma (charge symmetric
1 : 1 and charge asymmetric +2 : −1) which has been exactly solved in the bulk and in some
semi-infinite geometries [25, 28–30].

The coulombic coupling � is defined as the average Coulomb energy divided by the
thermal energy. We can actually define a coupling for each species of particles as follows.
In two dimensions these are defined as �2,α = βq2

α . On the other hand, in three dimensions
�3,α = βq2

αζ
1/3
α . In the Debye–Hückel regime we have �d,α � 1 and we can expand

exp

[
β

[
−iqαφ(r) +

q2
α

2
vS−E(r)

]]

= 1 − iβqαφ(r) +
βq2

α

2
vS−E(r) − (βqαφ(r))2

2
+ o

(
�2

d,α

)
. (13)

In two dimensions the field φ(r) has dimensions of charge qα , therefore, the above
approximation is an expansion to the order (�2,α)2 in the coulombic couplings �2,α . In
three dimensions the field φ(r) has dimensions of charge/distance. One can change a variable
in the functional integral to have a dimensionless field φ̃ = ζ−1/3φ/q, then it is clear that
the approximation (13) is again an expansion to the second order in the coulombic couplings
�3,α . Note that the self-energy term βq2

αvS−E(r)/2 is already of order (�d,α)2. This can
be seen by noting that the covariance of the Gaussian measure 1

Z
Dφ exp

(
β

2sd

∫
φ	φ

)
is

〈φ(r)φ(r′)〉 = β−1vd(r, r′). Then it is clear that the self-energy term βq2
αvS−E(r)/2 is of the

same order as (βqαφ(r))2. Therefore we do not include any terms of order
(
βq2

αvS−E(r)/2
)2

or β2q3
αφ(r)vS−E(r) which are of higher order in the expansion (13).

1 Rigorously speaking this Gaussian transformation cannot be formulated with the Coulomb potential vd(r, r′)
because this potential diverges when r = r′. This problem can be solved as in [27] using instead a potential such as
(1 − exp(−κr/ε))/r which is regularized at short distances and taking the limit ε → 0 at the end of the calculations.
Again, for simplicity, we will omit explicitly this detail in what follows.
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Using equation (13) and the pseudo-neutrality condition (2) we have

�(β, ζ1 . . . ζα, V ) =
〈

exp

[
−
∫ ∑

α

ζα (βqαφ(r))2

2
dr

]〉

× exp

(
−

r∑
α=1

∑
n

βζαq2
αsd

2λ0
n

)
exp

(∑
α

V ζα

)
(14)

where the spectral decomposition (6) of the self-energy and the normalization condition∫ ∣∣�0
n(rα)

∣∣2 dr = 1 have been used to write the contribution of the self-energy terms as a sum
over the eigenvalues λ0

n of the Laplacian without boundaries. Now performing the Gaussian
integration the averaged quantity equals

1

Z

∫
Dφ exp

(
1

2

∫
φ(r)(

β	

sd

−
∑

α

ζα(βqα)2)φ(r) dr

)
=
(

det

[
1 −

∑
α sdζαβq2

α

	

])−1/2

.

(15)

Note that the averaged quantity we had just computed is the generating functional of a
free boson theory with mass proportional to the inverse Debye length defined by κ =√∑

α sdζαβq2
α . Using the invariance of the determinant we obtain for the grand canonical

partition function

�(β, ζ1, . . . , ζα, V ) =
(∏

m

(
1 − κ2

λm

)∏
n

exp

(
κ2

λ0
n

))−1/2

exp

(∑
α

V ζα

)
. (16)

This is simply a product of factors that are a function of the eigenvalues λi of 	. The
λi depend on the shape of the domain in which the Coulomb system lies. As we see,
they constitute a natural way of introducing the information on the domain to calculate
the corresponding finite-size expansion of the grand potential �. It is interesting to point out
here that in the case of a non-confined system λn = λ0

n and the infinite products in (16) become
a regularized Weierstrass product

∏
n

[(
1 − κ2

/
λ0

n

)
exp

(
κ2
/
λ0

n

)]
. The

∏
exp

(
κ2
/
λ0

n

)
term

cancels out the ultraviolet divergence coming from the
∏(

1 − κ2
/
λn

)
term. This product

converges for systems in three dimensions [31]. However, as will be seen in the next section,
in two dimensions some infrared divergences appear and the product must be regularized by
introducing a lower cutoff. The sine-Gordon transformation has been known for some time
[19, 20, 24]. For three-dimensional non-confined systems the sine-Gordon transformation has
been used to go beyond the Debye–Hückel approximation and to perform low fugacity [35],
high temperature [36] or loopwise [37] expansions. The main point of this section was to show
that the proper subtraction of the self-energy terms (which have to be added initially to perform
the sine-Gordon transformation) leads to a well-defined expression for the grand potential in
the Debye–Hückel approximation which could be eventually evaluated for confined systems.
In appendix A we show how this formulation of the Debye–Hückel theory is related to the
usual one. In the following section we apply this method for the calculation of the grand
potential � = −kBT ln � of a Coulomb system confined in some simple geometries.

3. Finite-size corrections to the grand potential for a confined Coulomb system

3.1. Non-confined systems: the bulk

Before applying our method to confined systems let us illustrate some points of the calculation
of the grand potential from equation (16) for a bulk system. For a d-dimensional non-confined
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system the eigenfunctions corresponding to the λ0
k are given by �0

k(r) = exp(ik · r)/
√

V and
	�0

k(r) = λ0
k�

0
k(r) = −k2�0

k(r). Then substituting into equation (16) the grand potential is
given by

β� = V

2

∫
ddk

(2π)d

[
ln

(
1 +

κ2

k2

)
− κ2

k2

]
−
∑

α

V ζα. (17)

In three dimensions d = 3 the above integral is convergent giving the result for the bulk grand
potential per unit volume [27]

β�

V
= − κ3

12π
−
∑

α

ζα. (18)

The density nα of the particles can be obtained by using the usual thermodynamic relation

nα = −ζα

∂(β�/V )

∂ζα

= ζα +
κ

2
βq2

αζα (19)

which can be replaced back into equation (18) to give the well-known equation of state from
the Debye–Hückel theory [27, 32]

βp = −β�

V
=

∑
α

nα − κ3
DH

24π
. (20)

Note that in the last equation the Debye length that we have defined by κ−1 =[∑
α sdζαβq2

α

]−1/2
has been replaced by the usual Debye length in terms of the density

κ−1
DH = [∑

α sdnαβq2
α

]−1/2
. This is correct at the order of approximation we are working on

since κ = κDH
[
1 + O

(
�

3/2
3,α

)]
.

Let us point out that the proper subtraction of the self-energy terms makes the integral
(17) convergent and avoids the need to use some other arbitrary regularization scheme, such
as for instance dimensional regularization used in [24] which, by the way, yields the incorrect
result

∑
α ζα − κ3/(24π) for the pressure when it is expressed in terms of the fugacities. Our

regularization scheme is actually equivalent to the normal ordering for the product : φ(r)2 :
used in [27].

As was pointed out in the preceding section the infinite product (16) for a non-confined
system is a regularized Weierstrass product. The order of the sequence of the Laplacian
eigenvalues is µ = d/2 [31], therefore for d = 3, µ = 3/2 > 1 with integer part equal to 1,
and the terms exp

(
κ2
/
λ0

k

)
in the product (16) are enough to regularize the infinite product.

The situation in two dimensions d = 2 is more delicate since µ = 1 is a limiting case. If
we blindly try to compute (17) we will note that the integral is not well defined for k → 0.
Trying to cure an ultraviolet divergence, we introduced an infrared one. The problem can
be traced back to the spectral decomposition (5) of the Coulomb potential. Evaluating the
interparticle energy explicitly using expression (5) gives

v2(r, r′) = 1

2π

∫ 2π

0

∫ ∞

0

k exp(ik|r − r′|cos θ)

k2
dk dθ =

∫ ∞

0

dk

k
J0(k|r − r′|) (21)

with J0 the Bessel function of order 0. This integral diverges at k = 0. To avoid this, we
introduce a cutoff kmin at k → 0

v2(r, r′) =
∫ ∞

kmin

dk

k
J0(k|r − r′|) (22)

= −C + ln
2

|r − r′| kmin
+ o(1) (23)
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where kmin → 0 and C is the Euler constant. Since we know that v2(r, r′) = −ln(|r − r′|/L)

we can find the expression for kmin by comparison: v2(|r − r′|) = −ln(|r − r′|kmin/2 e−C) =
−ln(|r − r′|/L); then

kmin = 2 e−C

L
. (24)

We note that for the above calculation to be consistent it is necessary to choose L → ∞, as has
been discussed earlier in the preceding section. The necessity of this choice for the arbitrary
constant L is also discussed in appendix B of [22].

Returning to the calculation of the grand potential in two dimensions, we impose the
infrared cutoff kmin = 2 e−C/L on the integral (17) to obtain the result for the grand potential

β�

V
= κ2

4π

[
−ln

κL

2
− C +

1

2

]
−
∑

α

ζα. (25)

In the above expression all terms that vanish when L → ∞ have been omitted. The density–
fugacity relation is now

nα = −ζα

∂(β�/V )

∂ζα

= ζα − ζα

βq2
α

2

[
ln

κL

2
+ C

]
. (26)

For a two-component plasma it can be checked that this result is reproduced from the small-
βq2 expansion of the exact relation between the density and the fugacity [25]. Note again
that κ can be replaced by κDH at the order of approximation we are working on, since
κ = κDH[1 +O(�2,α ln �2,α)]. Applying equation (26) back into equation (25) one obtains the
equation of state, which turns out to be exact at the level of the Debye–Hückel approximation,

βp =
∑

α

nα

(
1 − βq2

α

4

)
. (27)

Doing the usual Legendre transform F = � +
∑

α µαNα , one can recover the known
expression for the excess free energy in the Debye–Hückel approximation [33, 34]

βFexc

V
= κ2

DH

4π

[
1

2
−ln

κDHL

2
− C

]
. (28)

To conclude with the results for a two-dimensional system let us clarify a point regarding
the limit L → ∞. Actually in equation (23) and below we require that L be large
compared to the average distance between particles which is of order n−1/2 with n the density.
In the Debye–Hückel approximation the density n is of the same order as the fugacity ζ .
Therefore we require that Lζ 1/2 � 1. In the results for the grand potential (25), the
densities (26) and the free energy (28), the quantity κL appears, which is proportional to
(βq2)1/2Lζ 1/2 = �1/2(Lζ 1/2). Note that in the above expression Lζ 1/2 � 1 but the coulombic
coupling � � 1. Therefore we require that in two dimensions the Debye–Hückel limit should
be taken with � → 0, Lζ 1/2 → ∞ but �1/2(Lζ 1/2) should remain of order 1.

3.2. The disc

We now consider a two-dimensional Coulomb fluid confined in a disc of radius R. To apply
the method outlined in section 2, we first need to compute the eigenvalues of the Laplace
operator for this geometry. Let �(r, ϕ) = R(r)�(ϕ), we look for the solution of the equation
	�(r, ϕ) = λ�(r, ϕ). Using the explicit form of the Laplace operator in polar coordinates
we find �(r, ϕ) = R(r)�(ϕ) ∝ e±ilϕIl(

√
λr), where Il(x) is the modified Bessel function of

order l. Using the boundary conditions �(R, ϕ) = 0; �(r, 0) = �(r, 2π), we find l ∈ Z and
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Il

(√
λkR

) = 0, that is
√

λkR = νl,n is the nth zero of Il .2 Then replacing these eigenvalues
into equation (16) gives for the grand potential the expression

β� = 1

2

∞∑
l=−∞

ln
∞∏

n=1

(
1 − R2κ2

ν2
l,n

)
− V κ2

2 (2π)

∫ ∞

kmin

dk

k
−
∑

α

V ζα. (29)

The second term, written as an integral over k, comes from the terms involving the Laplacian
eigenvalues for a non-confined system: exp

(
κ2
/
λ0

k

)
, with the same infrared cutoff kmin

discussed previously and given by equation (24). Both the sum and the integral diverge
separately for large values of l and k but when we put together both terms the ultraviolet
divergences should cancel. It is however more convenient to compute each term separately.
Therefore we will impose an upper cutoff N for l and kmax for k. Both cutoffs are of course
proportional; the exact relation between N and kmax can be obtained at the end of the calculations
by imposing that for the bulk grand potential we should recover the result (25) from the last
section.

Using the infinite product representation of the modified Bessel function
∏

n=1

(
1 −

κ2R2
/
ν2

l,n

) = l!(2/κR)lIl(κR) [38] and the property Il(x) = I−l (x) we have

β� =
N∑

l=0

ln l! + ln

(
2

κR

) N∑
l=0

l +
N∑

l=0

ln Il(κR)

− 1

2
ln [I0(κR)] − κ2V

4π

∫ kmax

kmin

dk

k
−
∑

α

V ζα. (30)

Using the Stirling approximation: ln N ! = N ln N −N + 1
2 ln(2πN)+ · · ·, the Euler–McLaurin

summation formula:
∑N

l=0 f (l) = ∫ N

0 f (l) dl + 1
2 [f (0) + f (N)] + 1

12 [f ′(N) − f ′(0)] + · · ·
and the uniform Debye expansion [38] for ln Il(z), valid for large z:

ln Il(z) = −1

2
ln(2π) − 1

4
ln(z2 + l2) + η(l, z) +

3u − 5u3

24l
+ o

(
1

z2 + l2

)
(31)

η(l, z) = (z2 + l2)1/2 − l sinh−1

(
l

z

)
u = l

(z2 + l2)1/2
(32)

after some calculations we finally obtain the large-R expansion

β� = κ2R2

4

(
1 + ln

2 e−C

κL

2N

kmaxR
− 4π

∑
α ζα

κ2

)
− R

(κπ

4

)
+

1

6
ln R + O(R0). (33)

In the above expression all terms that vanish when N → ∞ and kmax → ∞ have been
omitted. The bulk term (proportional to πR2) of the above equation (33) should be the same
as in equation (25), therefore the cutoffs N and kmax should be related by kmax = 2N

R
e1/2.

Finally

β� = βωbπR2 + 2πRβγ + 1
6 ln(κR) + O(R0) (34)

with the bulk grand potential per unit volume ωb (equal to minus the bulk pressure pb) given
by

βωb = −βpb = κ2

4π

[
−ln

κL

2
− C +

1

2

]
−
∑

α

ζα (35)

2 Note that since the zeros of Il are imaginary then
√

λk is imaginary; this is expected since the Laplacian eigenvalues
λk are negative.
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and the surface tension γ is given by

βγ = −κ

8
. (36)

The two-dimensional two-component plasma near a plane ideal conductor electrode has been
solved exactly [28]. For a two-component plasma our result (36) for the surface tension agrees
with the lower-order expansion in βq2 of the exact result of [28]. In equation (34) we note the
existence of the universal logarithmic finite-size correction 1

6 ln R with χ = 1 for the disc.

3.3. The annulus

We now consider a Coulomb fluid confined in an annulus of inner radius R1 and outer
radius R2. As before we need to calculate the eigenvalues of the Laplace operator for
this geometry. The eigenfunction of the Laplacian with eigenvalue λ, in this geometry, is
�(r, ϕ) = [AIl(

√
λr) + BKl(

√
λr)] eilϕ . Imposing the Dirichlet boundary conditions yields

the linear system of equations �(R1, ϕ) = 0 and �(R2, ϕ) = 0. To have a non-vanishing
solution for the eigenproblem we require that the determinant of this system vanishes. This
gives the equation that defines the eigenvalues for this problem

Il(
√

λR1)Kl(
√

λR2) − Kl(
√

λR1)Il(
√

λR2) = 0 (37)

which means that λk = z2
l,n where zl,n is the nth root of the equation

Il(zR1)Kl(zR2) − Kl(zR1)Il(zR2) = 0. (38)

Note that the roots of this equation are the same for l and −l, therefore we will concentrate
on the case l > 0. To compute the grand partition function from equation (16) we need to
evaluate the infinite product

∏
l

∏
n

(
1 − κ2

/
z2
l,n

)
. For a given l, the product over the index n

of the roots of equation (38) can be performed using a generalization of the infinite product
representation of the Bessel functions used in the last section [6, 8, 39]. For l > 0, let us
introduce the entire function

fl(z) = 2l(
R1
R2

)l − (
R2
R1

)l [Il(zR1)Kl(zR2) − Kl(zR1)Il(zR2)]. (39)

By construction the zeros of the function fl are zl,n and it has the following properties:
fl(0) = 1, f ′

l (0) = 0 and fl(z) = fl(−z). Therefore fl admits a Weierstrass infinite product
representation of the form [40]

fl(z) =
∏
n

(
1 − z2

z2
l,n

)
. (40)

Then the infinite product we wish to evaluate is simply
∏

n

(
1 − κ2

/
z2
l,n

) = fl(κ). For l = 0
the function f0 should read

f0(z) = 1

ln(R1/R2)
[I0(zR1)K0(zR2) − K0(zR1)I0(zR2)] . (41)

The grand potential is then given by

β� =
N∑

l=1

ln fl(κ) +
1

2
ln f0(κ) − κ2V

4π

∫ kmax

kmin

dk

k
−
∑

α

V ζα. (42)

As in the case of the disc we regularize the summation on l by introducing an upper cutoff
N and the integral with an ultraviolet cutoff kmax. These cutoffs are proportional in order to
cancel the divergences. However, their exact relationship is a priori different from that in the
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disc case and can be found at the end of the calculations by requiring that we recover the same
bulk value of the grand potential as in the previous examples. On the other hand, the infrared
cutoff kmin = 2 e−C/L is the same as before.

We now proceed to find the finite-size expansion of the grand potential. We consider a
very large annulus with R1 → ∞, R2 → ∞, R2 − R1 → ∞ and x = R1/R2 < 1 finite
and fixed. The calculations are similar to those of the disc; we now use the uniform Debye
expansion of ln Kl(z) valid for large arguments [38]

ln Kl(z) = ln

[√
π√
2

]
− 1

4
ln(l2 + z2) − η(l, z) + ln

[
1 − 3u − 5u3

24l

]
+ o

(
1

l2 + z2

)
(43)

with η(l, z) and u defined in equation (32). Note that in the functions fl(κ), the contribution
of Kl(κR2)Il(κR1) is exponentially smaller than that from the term Il(κR2)Kl(κR1). Using
again the Euler–McLaurin summation formula to transform the sum over l into an integral,
after some calculations we find in the limit N → ∞,

β� = 1

4

(
R2

2 ln
2N

kmaxR2
− R2

1 ln
2N

kmaxR1

)
+

κ2
(
R2

2 − R2
1

)
4

(
1

2
+ ln

2 e−C

κL

)

− π

4
κ(R2 + R1) + O(1). (44)

All terms that vanish when N → ∞ have been omitted. To recover the proper bulk value of
the grand potential and ensure extensivity, the first term in equation (44) should vanish. This
imposes the relationship between the ultraviolet cutoffs N and kmax:

2N e1/2

kmax
= R2x

x2

x2−1 . (45)

This relation is similar to that found in the disc replacing R by R2x
x2/(x2−1).

Returning to the grand potential we conclude that its large annulus expansion is

� = π
(
R2

2 − R2
1

)
ωb + 2π(R1 + R2)γ + O(1) (46)

with the ωb and γ given by equations (35) and (36), respectively. In the O(1) neglected terms
there are terms of the form ln(R1/R2) and more generally functions of x = R1/R2 which
are indeed of order 1. There are no logarithmic finite-size corrections, such as ln(κ

√
R1R2),

according to the fact that χ = 0 for an annulus.

4. Summary and conclusion

The method presented here gives a practical prescription for the calculation of finite-size
corrections of the grand potential of a Coulomb system in the Debye–Hückel regime, which
can be easily applied to more complicated geometries in two and three dimensions. The
proper subtraction of the self-energies avoids the divergence of the infinite products involved
in the calculations. In the disc and annulus geometry that we used to illustrate our method,
we recovered the bulk pressure and the surface tension of the system in the Debye–Hückel
regime. For the disc we obtained a universal finite-size correction 1

6 ln R, with the expected
value χ = 1, for the Euler characteristic of the disc. For the annulus since χ = 0 no
finite-size correction is expected and we confirmed this result by direct calculation of the
finite-size expansion. In the case of a system in a domain of arbitrary shape, the logarithmic
universal correction to the grand potential may be obtained from the asymptotic properties of
the spectrum of the Laplace operator and its relation with the geometry of the manifold for
which this spectrum is calculated [41, 42]. Work in this direction is in progress.
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Appendix A. Relationship with the usual formulation of the Debye–Hückel theory

The usual formulation of the Debye–Hückel theory [32], for a confined Coulomb system
with Dirichlet boundary conditions for the electric potential, starts by computing the electric
potential �α(r, r′) created at r′ by a particle of charge qα located at r and its polarization
cloud. We have �α(r, r′) = qαK(r, r′) with the Debye–Hückel kernel K that satisfies(

	 − κ2
DH

)
K(r, r′) = −sdδ(r − r′) (A.1)

with κ2
DH = ∑

α βq2
αnαsd . Formally K can be written as

K(r, r′) =
〈
r

∣∣∣∣ −sd

	 − κ2
DH

∣∣∣∣ r′
〉

(A.2)

where the Laplacian is considered to satisfy Dirichlet boundary conditions. Then, one
computes the internal potential energy U of the system as

U = 1

2

∫
dr

∑
α

q2
αnα lim

r′→r

(
K(r, r′) − v0

d(r, r′)
)

(A.3)

which can formally be written as

U = −1

2

∑
α

q2
αnαsd

∫
dr

〈
r

∣∣∣∣ 1

	 − κ2
DH

− 1

	0

∣∣∣∣ r
〉

(A.4)

= −κ2
DH

2β
Tr

[
1

	 − κ2
DH

− 1

	0

]
(A.5)

= −κ2
DH

2β

∑
n

[
1

λn − κ2
DH

− 1

λ0
n

]
. (A.6)

The notation 	0 denotes the Laplacian operator with free boundary conditions.
On the other hand, the internal excess energy U can be computed from the thermodynamic

relation U = −(∂ ln �/∂β)ζ,V . Using the sine-Gordon formulation, we can obtain an
independent expression for the internal excess energy and compare it to equation (A.6).
Using equation (16) gives

−
(

∂ ln �

∂β

)
ζ,V

= 1

2

∂

∂β

∑
n

[
ln

(
1 − κ2

λn

)
+

κ2

λ0
n

]

= − κ2

2β

∑
n

[
1

λn − κ2
− 1

λ0
n

]
. (A.7)

At the Debye–Hückel level of approximation κDH (expressed in terms of the densities) can be
replaced by κ (expressed in term of the fugacities) with corrections of higher order. Therefore
with equation (16) for the grand potential and equation (A.7), one recovers the expression
(A.6) for the internal excess energy obtained from the usual formulation of the Debye–Hückel
theory.
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Appendix B. On the pseudo-neutrality condition and the potential difference between
the system and the walls

Coulomb systems have the interesting property that any excess charge in the system is expelled
to the boundaries [23]. Therefore any infinite system is neutral. When the system is described
in the grand canonical ensemble with fugacities ζ ∗

α the electroneutrality has the consequence
that the fugacities are not independent. Several choices of the fugacities can describe the same
system. More precisely, the grand potential does not depend on the combination

∑
α qαζ ∗

α

[23, 26, 43]. Therefore one can impose the so-called pseudo-neutrality condition∑
α

qαζ ∗
α = 0. (B.1)

For a confined Coulomb system the situation is more involved. Suppose that the confined
system, described in the grand canonical ensemble with fugacities ζα , is in equilibrium with
an infinite neutral reservoir at zero electric potential with fugacities ζ ∗

α that satisfy the pseudo-
neutrality condition (B.1). Let us consider that the confined system is large and that, far from
the boundaries, the average electric potential of the system is a constant ψ0. Writing down
the equilibrium condition that the electrochemical potentials of the system and the reservoir
should be equal yields ζ ∗

α = ζα exp(−βqαψ0). Therefore the confined system can be described
with the fugacities ζα which a priori do not satisfy the pseudo-neutrality condition or with
the fugacities ζ ∗

α which satisfy the pseudo-neutrality condition plus the parameter ψ0 which is
the potential difference between the system and the reservoir. In this paper we have supposed
so far that the fugacities ζα satisfy the pseudo-neutrality conditions. In the following we will
consider the general case when the fugacities do not satisfy the pseudo-neutrality condition
and we will explore how they are related to the potential ψ0 �= 0 in an approximate mean
field picture. If ψ0 �= 0 this potential difference will create a surface charge density near the
boundaries and we would expect that this effect will add to the grand potential and the free
energy a surface term. We will show that this contribution turns out to be − 1

2Qψ0, where Q
is the excess charge of the system which is spread over the surface of the boundaries [23].

Actually we can justify this argument within our formalism of the sine-Gordon
transformation by adapting some arguments put forward in [26] for the case of free boundary
conditions. In the case of two-dimensional systems, we will also show that if the potential
difference ψ0 is not too high, the contributed surface term is of higher order in the coulombic
coupling constant than the surface tension already computed in section 3.2 and given by
equation (36), and therefore it can be neglected in the Debye–Hückel approximation.

Let us rewrite equation (12) for the grand canonical partition function as

�(β, ζα, V ) = 1

Z

∫
Dφ exp[−S] (B.2)

with the action S given by

−S =
∫ [

β

2sd

φ	φ +
∑

α

ζα exp(−iβqαφ)

]
. (B.3)

To lighten the notation, in this appendix we will often omit the variable r in the integrals:∫
φ = ∫

φ(r) dr. For simplicity we have omitted the self-energy term which is irrelevant in
the present discussion (one could eventually consider that the fugacities ζα are renormalized
by multiplying by exp(βq2

αvS−E/2)).
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If the fugacities do not satisfy the pseudo-neutrality condition, the stationary point of the
action S is not φ = 0 as before. Let ψ(r) be i times the solution of δS/δφ = 0. This field
satisfies

	ψ(r) + sd

∑
α

ζαqα exp(−βqαψ(r)) = 0. (B.4)

with Dirichlet boundary conditions: ψ(r) vanishes on the boundary. This is the Poisson–
Boltzmann equation and the field ψ(r) is the average electrostatic potential in the mean field
approximation [44]. Note that if the fugacities ζα satisfy the pseudo-neutrality condition then
ψ(r) = 0 is a solution of the Poisson–Boltzmann equation (B.4). In this case, and in the mean
field approximation, the potential difference between the boundaries and the system is zero.
If the fugacities ζα do not satisfy the pseudo-neutrality condition then ψ(r) is not zero, and
contrary to what has been done before, the expansion to the quadratic order of the action S
should now be done around φ = −iψ instead of φ = 0. To accomplish this let us change the
variable in the functional integral φ′ = φ + iψ . We have Dφ = Dφ′ and the action is now
given by

−S =
∫

β

2sd

[
φ′	φ′ − 2iφ′	ψ − ψ	ψ

]
+
∑

α

ζα exp(−βqα(ψ + iφ′)). (B.5)

The new field φ′ fluctuates around 0 and now we can expand the exponential to the second order
in the coulombic coupling. The linear terms in φ′ in the action S are cancelled by applying the
stationary condition (Poisson–Boltzmann) equation (B.4) and we find S = S1 + S2 + o

(
�

d/2
d,α

)
with

S1 = 1

2

∫
φ′(r)

(
−β	

sd

+
∑

α

(βqα)2ζα exp(−βqαψ(r))

)
φ′(r) dr (B.6)

S2 =
∫ [

β

2sd

ψ(r)	ψ(r) −
∑

α

ζα exp(−βqαψ(r))

]
dr. (B.7)

The term S1 is of order �
d/2
d,α in the coupling constants. To verify this, note that in two

dimensions the field φ′ can be written as qf (κr) with f some function of order one and q
is the magnitude of the elementary charges in the system, for example q = max |qα|. Rescaling
the distances in the integral by the inverse Debye length κ shows that S1 is of order �2,α . In three
dimensions φ′ = qκf (κr) and doing the same scaling in the integral as above shows that S1 is
now of order �

3/2
3,α . To know the order of magnitude of S2 we need further assumptions.

To proceed, we shall need in principle the solution ψ(r) of the Poisson–Boltzmann
equation (B.4). However, the solution of the Poisson–Boltzmann equation is not known
explicitly except for a few very simple geometries [45–48]. Nevertheless the qualitative
behaviour of the mean field ψ(r) is very simple. It vanishes on the boundary and a few
screening lengths away from the boundary it is almost equal to a constant value ψ0. This
constant average value of the potential ψ0 is given by the Poisson–Boltzmann equation (B.4)
for a constant field:∑

α

qαζα exp(−βqαψ0) = 0. (B.8)

Let us define the renormalized fugacities ζ ∗
α = ζα exp(−βqαψ0). By equation (B.8) these new

fugacities satisfy the pseudo-neutrality condition (B.1). The physical interpretation of these
new fugacities is of course the one exposed at the beginning of this appendix: they are the
fugacities of the infinite neutral grounded reservoir. Let us now write ψ(r) = ψ0 + δψ(r).
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Note that δψ(r) is almost zero in the deep interior of the system and only has significant values
near the boundaries. Let us suppose that the variations of δψ(r) are small, more precisely, let
us suppose that δψ(r) = qg(κr) in two dimensions or δψ(r) = κqg(κr) in three dimensions
with g some function of order 1. Then expanding S1 for small δψ yields

S1 = 1

2

∫
φ′(r)

(
−β	

sd

+
∑

α

(βqα)2ζ ∗
α

)
φ′(r) dr + O

(
�d

d,α

)
. (B.9)

For the second part of the action the same expansion yields

S2 = −
∑

α

ζ ∗
α V +

βψ0

2sd

∫
	(δψ) +

β

2sd

∫
δψ(	 − κ2)δψ + O

(
�d

d,α

)
(B.10)

where we have defined the inverse Debye length κ in terms of the renormalized fugacities
ζ ∗
α as κ = √

βsd

∑
α ζ ∗

α q2
α . Actually a closer inspection of equation (B.10) shows that the

last term of S2 is actually of higher order than the two other terms. Indeed expanding the
Poisson–Boltzmann equation (B.4) for δψ small shows that

	(δψ) − κ2δψ = O(ζ ∗
α qα(βqαδψ)2). (B.11)

Therefore

− β

2sd

∫
δψ(	 − κ2)δψ = O

(
�d

d,α

)
(B.12)

and

S2 = −
∑

α

ζ ∗
α V +

βψ0

2sd

∫
V

	(δψ) + O
(
�d

d,α

)
. (B.13)

Note now that only S1 depends on φ′ and the result of the functional Gaussian integration over
the field φ′ will be the same as in section 2, equation (15), except that the fugacities ζα have to
be replaced by ζ ∗

α . The term S2 does not depend on the field φ′ and will give only an additive
contribution to the grand potential. Finally we obtain for the grand potential

� = kBT

2
ln

(∏
m

(
1 − κ2

λm

)∏
n

exp

(
κ2

λ0
n

))
− kBT

∑
α

V ζ ∗
α + �S. (B.14)

That is the same grand potential as before but evaluated for the fugacities ζ ∗
α instead of ζα plus

a contribution

�S = S2 +
∑

α

ζ ∗
α V = −ψ0

2

∫
V

ρ(r) dr = −1

2
ψ0Q. (B.15)

We have used Poisson’s equation 	ψ = −sdρ with ρ the average charge density of the system
in the mean field approximation. The excess total charge is Q = ∫

V
ρ. Let us remark on a

few points about this term. The charge density ρ(r) is different from zero near the boundaries
and a few Debye lengths away from the boudaries it vanishes. The charge Q is spread near
the surface of the system. Therefore the additional contribution �S to the grand potential is
actually a surface contribution. This is even more clear if from equation (B.13) we use the
Gauss theorem to write �S as

�S = ψ0

2sd

∮
∂V

∇ψ(r) · dS = ψ0

2

∮
∂V

σw(r) dS (B.16)

where σw = sd∂nψ is the surface charge density induced in the boundary walls of an ideal
conductor. This charge is external to the system. Since the ideal conductor is grounded and
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it is in total influence with the Coulomb system we have
∮
∂V

σw dS = −Q, thus recovering
equation (B.15). This term could further be expressed as

�S = ψ0κ
2

2sd

∫
V

δψ(r) dr (B.17)

where we have used equation (B.11). Let us point out that this additional contribution �S

is not the naive electrostatic energy Uelst = 1
2

∫
V

ρ(r)ψ(r) dr. This can be checked for
the two-dimensional two-component plasma near a planar wall made of ideal conductor.
Using the results from [28], for small coulombic coupling, the mean field electric potential is
ψ(x) = ψ0(1 − e−κx), with x the distance from the wall. Then in this case Uelst = −�S/2.

In general in two or three dimensions �S is of order �d,α . However, for two-dimensional
systems when the pseudo-neutrality condition is satisfied, we have found a surface tension
given by equation (36) which is of lower order �

1/2
2,α . Therefore in two dimensions the surface

contribution �S to the grand potential due to the potential difference ψ0 between the system
and the reservoir found in this appendix can be neglected in front of the surface tension given
in equation (36). This fact has also been noticed in [28] where the exact expression of the
surface tension for a symmetric two-component plasma has been computed and its expansion
for small coulombic coupling parameter shows that the potential ψ0 does not contribute in the
dominant order.

For two-dimensional systems, we can conclude that the results of sections 2 and 3 also
apply when the fugacities do not satisfy the pseudo-neutrality condition, provided that one
replaces the original fugacities ζα with the renormalized fugacities ζ ∗

α = ζα exp(−βqαψ0)

which do satisfy the pseudo-neutrality condition.
In three dimensions the situation is somehow different. By dimensional analysis one

would expect that for a system of characteristic size R and with ψ0 = 0 the surface term of
the grand potential will be proportional to κ2R2, therefore of order �3,α .3 Then for a system
with ψ0 �= 0 the additional surface contribution �S found in this appendix will in principle
contribute to the total surface tension (see, however, the footnote).

Let us mention that if the potential difference ψ0 is large one should go back to
equations (B.6) and (B.7) and try to study the whole nonlinear problem. There is an interesting
regime where the fluctuations φ′ around the mean field are small enough to expand the action
S to the second order as S = S1 + S2 but that the mean field ψ0 could be large and further
expansion of S1, equation (B.9), and S2, equation (B.13), is not possible. It is expected
that some very interesting phenomena could occur in this nonlinear regime, for instance
renormalization and saturation of the surface charge Q and the potential ψ0, as in the studies
of highly charged colloids [49–51].

To conclude this discussion we should highlight a delicate point. The analysis done in this
appendix is based on a mean field approximation: the function ψ(r) and its constant value ψ0

inside the system are the solution of the Poisson–Boltzmann equation (B.4). In full generality
they are different from the average electric potential inside the system. Only at the first order,
in the ideal gas approximation (nα = ζ ∗

α ), can we identify both. Nevertheless our goal was
to obtain an estimation of the corrections to the grand potential when the pseudo-neutrality
condition is not satisfied, and based on this estimate we can conclude that these corrections
are of higher order.

3 Applying our method to three-dimensional systems actually gives a surface tension γ = β−1(κ2/16π) ln(κ/kmax)

with kmax an ultraviolet cutoff. This result will be reported in a future work currently under preparation. Therefore it
turns out that the dominant term in the surface tension is of order �3,α ln �3,α and the correction �S is again of higher
order.
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[30] Šamaj L 2003 J. Stat. Phys. 111 261
[31] Voros A 1987 Commun. Math. Phys. 110 439
[32] See, e.g., McQuarrie D A 2000 Statistical Mechanics (Mill Valley, CA: University Science Books)
[33] Deutsch C, Dewitt H E and Furutani Y 1979 Phys. Rev. A 20 2631
[34] Deutsch C and Lavaud M 1974 Phys. Rev. A 9 2598
[35] Caillol J M and Raimbault J L 2001 J. Stat. Phys. 103 753
[36] Raimbault J L and Caillol J M 2001 J. Stat. Phys. 103 777
[37] Caillol J M 2003 Sine-Gordon theory for the equation of state of classical hard-core coulomb systems: III.

Loopwise expansion Preprint cond-mat/0305465 (J. Stat. Phys. submitted)
[38] Abramowitz M and Stegun I S 1972 Handbook of Mathematical Functions 9th edn (New York: Dover)
[39] Forrester P J 1992 J. Stat. Phys. 67 433
[40] See, e.g., Whittaker E T and Watson G N 1902 A Course of Modern Analysis (Cambridge: Cambridge University

Press)
[41] Kac M 1966 Am. Math. Mon. 73 1
[42] McKean H P Jr and Singer I M 1967 J. Diff. Geom. 1 43
[43] Aqua J N and Cornu F 2003 Density profiles in a quantum Coulomb fluid near a hard wall (J. Stat. Phys.

submitted)
[44] Kennedy T 1984 J. Stat. Phys. 37 529
[45] Gouy G 1910 J. Physique IX 457
[46] Chapman D L 1913 Phil. Mag. 25 475
[47] Grahame D C 1953 J. Chem. Phys. 21 1054
[48] Tracy C A and Widom H 1997 Physica A 244 402
[49] Alexander A, Chaikin P M, Grant P, Morales G J and Pincus P 1984 J. Chem. Phys. 80 5776
[50] Bocquet L, Trizac E and Aubouy M 2002 J. Chem. Phys. 117 8138
[51] Téllez G and Trizac E 2003 Density functional theory study of electric potential saturation: planar geometry

Phys. Rev. E 68 061401 (Preprint cond-mat/0308015)


